Reflection and Self-Assessment

Part 1: Circle the statement that best describes how you completed the practice:

- I answered all questions without using the online solutions. I checked my answers against the key at the back of the practice and was able to determine my mistakes and correct them without referring to the online solutions.
- I answered most questions correctly without using the online solutions. I used the online solutions to help me with some questions and was able, with help from the online solutions, to understand every question and answer them correctly.
- I used the online solutions to help me with most of the questions. I was able, with help from the online solutions, to understand each question and answer them correctly.
- Even using the online solutions, I was not able to fully understand the solution to some problems. The questions I had trouble with were:
- I did not attempt all the questions on the practice.

Part 2: Circle the statement that best describes your confidence in answering questions of this type in the future.

- I am confident I can answer nearly any question of this type correctly without using notes or other assistance.
- I am confident I can answer **MOST** questions of this type correctly without using notes or other assistance.
- I am **NOT** confident I can answer most questions of this type correctly without using notes or other assistance.

Name:_____

- 1. Roughly sketch
 - a. A line with positive slope

b. A line with negative slope

c. A line with 0 slope

2.

Match		
a. A line with positive slope and y intercept of 5.	A:	
b. A line with negative slope and y intercept of 5.	B:	
c. A line with positive slope and y intercept of 10.	C:	
d. A line with zero slope and y intercept of 10.	D:	
f. A line with negative slope and y intercept of 10.	E:	

a.

Name:_

3. Determine the slope of each of the following lines (remember slope = $\frac{rise}{run}$), write slope as a fraction or as a whole number.

a.

Name:_

4. Determine the equation for each of the following lines in the form y = mx + b. Remember the m parameter is the slope and the b parameter is the y – intercept. Write slope as a decimal rounded to 2 sig figs.

*** NOTE that the way the graphs are cropped the grid lines may the y-values look like they have negatives in front of them, all the y-values are positive.

b.

с.

- 5. For each graph, two points are shown, what is the slope of the line connecting those two points? Write slope as a decimal rounded to 2 significant figures.
 - a.

b.

Name:

6. The distance a person has driven is graphed below. Round all answers to 2 sig figs.

- a. What is the independent variable, and what units are used for it?
- b. What is the dependent variable, and what units are used for it?
- c. How far has the person travelled after 2 hours? Be sure to include units.
- d. What is the equation for this relation with units included? Use the variable d for distance travelled and t for time.

e. Use your equation to determine how far the person would have travelled after 6.25 hours.

Name:_

7. The amount of beans a person can buy with x amount of money is graphed below. Round all answers to 1 sig figs.

- a. How much beans can they buy with \$2?
- b. Determine an equation for this relation with units. Use the variable *B* for amount of beans and *m* for money.

c. Rearrange the equation so that money is the subject.

d. Use the equation from c to determine the cost of 6.3×10^6 grams of beans.

Name:__

8. An experimenter measures the force they apply to a ball and the distance the ball travels before it stops. Use the data to answer the following questions, round all answers to 2 sig figs.

- a. Plot the points on the graph above, draw a line, and determine an equation for the relationship with units. Use *d* for distance and *F* for force.
- b. Use your equation to determine the distance the ball would travel if you applied 572 N of force.
- c. Rearrange the equation so that force is the independent variable.

d. Use the equation from c to determine the force required so the ball travels 65 cm.

9. Below is a scatter plot of the distance an object travels as a function of time. Round all answers to 2 sig figs.

a. Draw a line of best fit on the graph and use it to determine an equation for the relation.
Be sure to include units in both your slope and y intercept. Use the variable d for distance and t for time.

b. Use your equation to determine the distance the object will travel after 79 seconds.

10. Sal is a handy-person and changes various amounts for different projects. They have recorded the amount they changed and the hours spent working on various projects. Round all answers to 2 sig figs.

- a. Draw a line of best fit on the graph and determine an equation for it with units. Choose appropriate variables for amount charged and time working on the project.
- b. Looking at the equation from a, about what does Sal charge per hour on average?
- c. Using your equation how much would you expect Sal to charge for a project that takes 56 hours?
- d. Rearrange your equation so that time is the subject.
- e. Use your equation from d to determine how long Sal would be expected to work on a project with cost of \$850?

Name:_____

Name:_____

Answer Key					
1a)	1b)	1c)	2a) C	2b) A	
2c) D	2d) E	2f) B	3a) 3	3b) $-\frac{3}{4}$	
3c) $\frac{2}{3}$	4a) $y = 0.50x + 1$	4b) $y = -1.5x + 9$	4c) y = 25x + 75	5a) 0.30	
5b) —3.0	6a) Time, units are hours	6b) Distance, km are the units	6c) 150 km	$ d = \left(75\frac{km}{hr}\right)(t) $	
6e) 470 km	7a) 800 grams	7b) $B = \left(400\frac{g}{\$}\right)(m)$	7c) $m = \frac{B \cdot \$}{400 \ g}$	7d) \$20 000 OR $$2 \times 10^4$	
8a) $d = (0.50 \frac{cm}{N})(F)$	8b) 290 cm	8c) $F = \frac{d \cdot N}{0.50 cm}$	8d) 130 N	9a) Your answer may be slightly different for all of question 9 and 10 due to how you drew your line $d = \left(1.5\frac{m}{s}\right)(t) + 7.5m$	
9b) 130 m	10a) $C = (22\frac{\$}{hr})(t)$	10b) \$22	10c) \$1200	$10d)\frac{c \cdot hr}{22 \$} = t$	
10e) 39 hr					